Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

1. Einführung

1.1 Motivation

Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung.

Beispiel 78

Wir betrachten das Szenario: Bei einem Druckerserver kommen Aufträge in einer Warteschlange an, die alle 1/n Zeiteinheiten vom Server abgefragt wird. Der Server nimmt also zu den diskreten Zeitpunkte $1/n, 2/n, 3/n, \ldots$ neue Aufträge entgegen. Durch den Grenzwert $n \to \infty$ "verschmelzen" diese diskreten Zeitpunkte zu einer kontinuierlichen Zeitachse, und für die Zufallsvariable T, welche die Zeitspanne bis zum Eintreffen des nächsten Auftrags misst, reicht eine diskrete Wertemenge W_T nicht mehr aus.

1.2 Kontinuierliche Zufallsvariablen

Definition 79

Eine kontinuierliche oder auch stetige Zufallsvariable X und ihr zugrunde liegender kontinuierlicher (reeller) Wahrscheinlichkeitsraum sind definiert durch eine integrierbare Dichte(-funktion) $f_X : \mathbb{R} \to \mathbb{R}_0^+$ mit der Eigenschaft

$$\int_{-\infty}^{+\infty} f_X(x) \, \mathrm{d} \, x = 1.$$

Eine Menge $A\subseteq\mathbb{R}$, die durch Vereinigung $A=\bigcup_k I_k$ abzählbar vieler paarweise disjunkter Intervalle beliebiger Art (offen, geschlossen, halboffen, einseitig unendlich) gebildet werden kann, heißt Ereignis. Ein Ereignis A tritt ein, wenn X einen Wert aus A annimmt. Die Wahrscheinlichkeit von A ist bestimmt durch

$$\Pr[A] = \int_A f_X(x) \, \mathrm{d} \, x = \sum_k \int_{I_k} f_X(x) \, \mathrm{d} \, x.$$

Beispiel 80 (Gleichverteilung)

Eine besonders einfache kontinuierliche Dichte stellt die Gleichverteilung auf dem Intervall [a,b] dar. Sie ist definiert durch

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{für } x \in [a, b], \\ 0 & \text{sonst.} \end{cases}$$

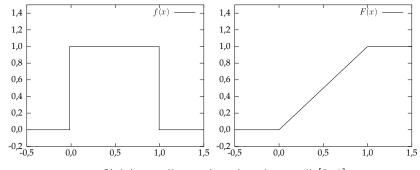
Analog zum diskreten Fall ordnen wir jeder Dichte f_X eine Verteilung oder Verteilungsfunktion F_X zu:

$$F_X(x) := \Pr[X \le x] = \Pr[\{t \in \mathbb{R} \mid t \le x\}] = \int_{-\infty}^x f_X(t) \,\mathrm{d}\,t.$$

Beispiel 81

Die Verteilungsfunktion der Gleichverteilung:

$$F(x) = \int_{-\infty}^{x} f(t) dt = \begin{cases} 0 & \text{für } x < a, \\ \frac{x-a}{b-a} & \text{für } a \le x \le b, \\ 1 & \text{für } x > b. \end{cases}$$



Gleichverteilung über dem Intervall $\left[0,1\right]$

Beobachtungen: (Eigenschaften der Verteilungsfunktion)

- \bullet F_X ist monoton steigend.
- ullet F_X ist stetig. Man spricht daher auch von einer "stetigen Zufallsvariablen".
- Es gilt: $\lim_{x\to -\infty} F_X(x) = 0$ und $\lim_{x\to \infty} F_X(x) = 1$.
- Jeder (außer an endlich vielen Punkten) differenzierbaren Funktion F, welche die zuvor genannten Eigenschaften erfüllt, können wir eine Dichte f durch f(x) = F'(x) zuordnen.

Es gilt

$$\Pr[a < X \le b] = F_X(b) - F_X(a).$$

Bei den von uns betrachteten Dichten besteht zwischen den Ereignissen " $a < X \le b$ ", " $a \le X \le b$ ", " $a \le X < b$ " und "a < X < b" kein wesentlicher Unterschied, da

$$\int_{[a,b]} f(t) dt = \int_{[a,b]} f(t) dt = \int_{[a,b]} f(t) dt = \int_{[a,b]} f(t) dt.$$

1.3 Kolmogorov-Axiome und σ -Algebren

1.3.1 σ -Algebren

Definition 82

Sei Ω eine Menge. Eine Menge $\mathcal{A}\subseteq\mathcal{P}(\Omega)$ heißt σ -Algebra über Ω , wenn folgende Eigenschaften erfüllt sind:

- (E1) $\Omega \in \mathcal{A}$.
- (E2) Wenn $A \in \mathcal{A}$, dann folgt $\bar{A} \in \mathcal{A}$.
- (E3) Für $n \in \mathbb{N}$ sei $A_n \in \mathcal{A}$. Dann gilt auch $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$.

Für jede (endliche) Menge Ω stellt die Menge $\mathcal{P}(\Omega)$ eine σ -Algebra dar.

Für $\Omega = \mathbb{R}$ ist die Klasse der Borel'schen Mengen, die aus allen Mengen $A \subseteq \mathbb{R}$ besteht, welche sich durch abzählbare Vereinigungen und Schnitte von Intervallen (offen, halboffen oder geschlossen) darstellen lassen, eine σ -Algebra.

1.3.2 Kolmogorov-Axiome

Definition 83 (Wahrscheinlichkeitsraum, Kolmogorov-Axiome)

Sei Ω eine beliebige Menge und $\mathcal A$ eine σ -Algebra über Ω . Eine Abbildung

$$\Pr[.]: \mathcal{A} \to [0,1]$$

heißt Wahrscheinlichkeitsmaß auf A, wenn sie folgende Eigenschaften besitzt:

- (W1) $Pr[\Omega] = 1$.
- $oldsymbol{0}$ (W2) A_1,A_2,\ldots seien paarweise disjunkte Ereignisse. Dann gilt

$$\Pr\left[\bigcup_{i=1}^{\infty} A_i\right] = \sum_{i=1}^{\infty} \Pr[A_i].$$

Für ein Ereignis $A \in \mathcal{A}$ heißt $\Pr[A]$ Wahrscheinlichkeit von A. Ein Wahrscheinlichkeitsraum ist definiert durch das Tupel $(\Omega, \mathcal{A}, \Pr)$.

Die in obiger Definition aufgelisteten Eigenschaften eines Wahrscheinlichkeitsmaßes wurden von dem russischen Mathematiker Andrei Nikolaevich Kolmogorov (1903–1987) formuliert. Kolmogorov gilt als einer der Pioniere der modernen Wahrscheinlichkeitstheorie, leistete jedoch auch bedeutende Beiträge zu zahlreichen anderen Teilgebieten der Mathematik. Informatikern begegnet sein Name auch im Zusammenhang mit der so genannten Kolmogorov-Komplexität, einem relativ jungen Zweig der Komplexitätstheorie.

Die Eigenschaften in obiger Definition nennt man auch Kolmogorov-Axiome.

Lemma 84

Sei $(\Omega, \mathcal{A}, \Pr)$ ein Wahrscheinlichkeitsraum. Für Ereignisse A, B, A_1, A_2, \ldots gilt

- $\Pr[\emptyset] = 0, \Pr[\Omega] = 1.$
- $0 \le \Pr[A] \le 1.$
- **3** $\Pr[\bar{A}] = 1 \Pr[A]$.
- Wenn $A \subseteq B$, so folgt $Pr[A] \le Pr[B]$.

Lemma 84

3 (Additionssatz) Wenn die Ereignisse A_1, \ldots, A_n paarweise disjunkt sind, so folgt

$$\Pr\left[\bigcup_{i=1}^{n} A_i\right] = \sum_{i=1}^{n} \Pr[A_i].$$

Für disjunkte Ereignisse A, B erhalten wir insbesondere

$$\Pr[A \cup B] = \Pr[A] + \Pr[B].$$

Für eine unendliche Menge von paarweise disjunkten Ereignissen A_1, A_2, \ldots gilt analog $\Pr\left[\bigcup_{i=1}^{\infty} A_i\right] = \sum_{i=1}^{\infty} \Pr[A_i].$

Beweis:

Wenn wir in Eigenschaft (W2) $A_1 = \Omega$ und $A_2, A_3, \ldots = \emptyset$ setzen, so ergibt die Eigenschaft, dass $\Pr[\Omega] + \sum_{i=2}^{\infty} \Pr[\emptyset] = \Pr[\Omega]$. Daraus folgt $\Pr[\emptyset] = 0$.

Regel 2 und Regel 5 gelten direkt nach Definition der Kolmogorov-Axiome und Regel 1.

Regel 3 erhalten wir mit Regel 5 wegen $1 = \Pr[\Omega] = \Pr[A] + \Pr[\bar{A}].$

Für Regel 4 betrachten wir die disjunkten Ereignisse A und $C := B \setminus A$, für die gilt, dass $A \cup B = A \cup C$. Mit Regel 5 folgt die Behauptung.

1.3.3 Lebesgue-Integrale

Eine Funktion $f:\mathbb{R}\to\mathbb{R}$ heißt messbar, falls das Urbild jeder Borel'schen Menge ebenfalls eine Borel'sche Menge ist.

 $\mathsf{Z}.\mathsf{B}.$ ist für jede Borel'sche Menge A die Indikatorfunktion

$$I_A: x \mapsto \begin{cases} 1 & \text{falls } x \in A, \\ 0 & \text{sonst} \end{cases}$$

messbar. Jede stetige Funktion ist messbar. Auch Summen und Produkte von messbaren Funktionen sind wiederum messbar.

Jeder messbaren Funktion kann man ein Integral, das so genannte Lebesgue-Integral, geschrieben $\int f \, \mathrm{d} \, \lambda$, zuordnen.

Ist $f:\mathbb{R} \to \mathbb{R}_0^+$ eine messbare Funktion, so definiert

$$\Pr: A \mapsto \int f \cdot I_A \, \mathrm{d} \, \lambda$$

eine Abbildung auf den Borel'schen Mengen, die die Eigenschaft (W2) der Kolmogorov-Axiome erfüllt. Gilt daher zusätzlich noch $\Pr[\mathbb{R}]=1$, so definiert f auf natürliche Weise einen Wahrscheinlichkeitsraum (Ω,\mathcal{A},\Pr) , wobei $\Omega=\mathbb{R}$ und \mathcal{A} die Menge der Borel'schen Mengen ist.

1.4 Rechnen mit kontinuierlichen Zufallsvariablen

1.4.1 Funktionen kontinuierlicher Zufallsvariablen

Sei Y:=g(X) mit einer Funktion $g:\mathbb{R}\to\mathbb{R}.$ Die Verteilung von Y erhalten wir durch

$$F_Y(y) = \Pr[Y \le y] = \Pr[g(X) \le y] = \int_C f_X(t) dt.$$

Hierbei bezeichnet $C:=\{t\in\mathbb{R}\mid g(t)\leq y\}$ alle reellen Zahlen $t\in\mathbb{R}$, für welche die Bedingung " $Y\leq y$ " zutrifft. Das Integral über C ist nur dann sinnvoll definiert, wenn C ein zulässiges Ereignis darstellt. Aus der Verteilung F_Y können wir durch Differenzieren die Dichte f_Y ermitteln.

Beispiel 85

Sei X gleichverteilt auf dem Intervall]0,1[. Für eine Konstante $\lambda>0$ definieren wir die Zufallsvariable $Y := -(1/\lambda) \ln X$.

$$\begin{split} F_Y(y) &= \Pr[-(1/\lambda) \ln X \le y] = \Pr[\ln X \ge -\lambda y] \\ &= \Pr[X \ge e^{-\lambda y}] \\ &= 1 - F_X(e^{-\lambda y}) \\ &= \begin{cases} 1 - e^{-\lambda y} & \text{für } y \ge 0, \\ 0 & \text{sonst.} \end{cases} \end{split}$$

Beispiel (Forts.)

Damit folgt mit $f_Y(y) = F_Y'(y)$ sofort

$$f_Y(y) = \begin{cases} \lambda e^{-\lambda y} & \text{für } y \ge 0, \\ 0 & \text{sonst.} \end{cases}$$

Eine Zufallsvariable mit einer solchen Dichte f_Y nennt man exponentialverteilt.

Beispiel 86

Sei X eine beliebige Zufallsvariable. Für $a,b\in\mathbb{R}$ mit a>0 definieren wir die Zufallsvariable $Y := a \cdot X + b$.

Es gilt

$$F_Y(y) = \Pr[aX + b \le y] = \Pr\left[X \le \frac{y - b}{a}\right] = F_X\left(\frac{y - b}{a}\right),$$

und somit

$$f_Y(y) = \frac{\mathrm{d}\, F_Y(y)}{\mathrm{d}\, y} = \frac{\mathrm{d}\, F_X((y-b)/a)}{\mathrm{d}\, y} = f_X\left(\frac{y-b}{a}\right) \cdot \frac{1}{a}\,.$$

Simulation von Zufallsvariablen

Unter der Simulation einer Zufallsvariablen X mit Dichte f_X versteht man die algorithmische Erzeugung von Zufallswerten, deren Verteilung der Verteilung von Xentspricht.

Dazu nehmen wir an, dass die zu simulierende Zufallsvariable X eine stetige, im Bildbereich [0,1] streng monoton wachsende Verteilungsfunktion F_X besitzt. Weiter nehmen wir an, dass U eine auf]0,1[gleichverteilte Zufallsvariable ist, die wir simulieren können.

Aus unserer Annahme über F_X folgt, dass es zu F_X eine (eindeutige) inverse Funktion F_{Y}^{-1} gibt mit $F_{X}(F_{Y}^{-1}(x)) = x$ für alle $x \in]0,1[$.

Sei nun

$$\tilde{X} := F_X^{-1}(U) \,,$$

dann gilt

$$\begin{aligned} \Pr[\tilde{X} \leq t] &= \Pr[F_X^{-1}(U) \leq t] \\ &= \Pr[U \leq F_X(t)] \\ &= F_U(F_X(t)) \\ &= F_X(t) \,. \end{aligned}$$

Beispiel 87

Im obigen Beispiel der Exponentialverteilung gilt $F_X(t)=1-e^{-t}$ für $t\geq 0$, und wir erhalten auf]0,1[die Umkehrfunktion $F_X^{-1}(t)=-\ln(1-t).$ Also gilt $\tilde X=F_X^{-1}(U)=-\ln(1-U).$

1.4 Rechnen mit kontinuierlichen Zufallsvariablen

Statt \tilde{X} haben wir im Beispiel die Zufallsvariable $-\ln U$ betrachtet, die aber offensichtlich dieselbe Verteilung besitzt.

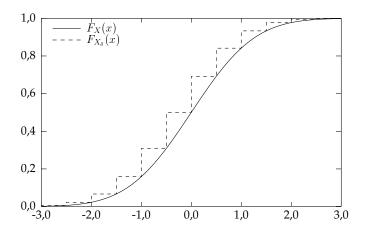
1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen

Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir für ein festes $\delta>0$ definieren

$$X_{\delta} = n\delta \iff X \in [n\delta, (n+1)\delta[\text{ für } n \in \mathbb{Z}.$$

Für X_δ gilt

$$\Pr[X_{\delta} = n\delta] = F_X((n+1)\delta) - F_X(n\delta).$$



Für $\delta \to 0$ nähert sich die Verteilung von X_δ der Verteilung von X immer mehr an.

1.4.3 Erwartungswert und Varianz

Definition 88

Für eine kontinuierliche Zufallsvariable X ist der Erwartungswert definiert durch

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} t \cdot f_X(t) \, \mathrm{d} t,$$

sofern das Integral $\int_{-\infty}^{\infty} |t| \cdot f_X(t) dt$ endlich ist.

Für die Varianz gilt entsprechend

$$\operatorname{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \int_{-\infty}^{\infty} (t - \mathbb{E}[X])^2 \cdot f_X(t) \, \mathrm{d} t,$$

wenn $\mathbb{E}[(X - \mathbb{E}[X])^2]$ existiert.

Lemma 89

Sei X eine kontinuierliche Zufallsvariable, und sei

$$Y := g(X)$$
.

Dann gilt

$$\mathbb{E}[Y] = \int_{-\infty}^{\infty} g(t) \cdot f_X(t) \, \mathrm{d} t.$$

Beweis:

Wir zeigen die Behauptung nur für den einfachen Fall, dass g eine lineare Funktion ist, also $Y:=a\cdot X+b$ für $a,b\in\mathbb{R}$ und a>0.

Es gilt (siehe obiges Beispiel)

$$\mathbb{E}[a \cdot X + b] = \int_{-\infty}^{\infty} t \cdot f_Y(t) \, \mathrm{d} \, t = \int_{-\infty}^{\infty} t \cdot f_X\left(\frac{t - b}{a}\right) \cdot \frac{1}{a} \, \mathrm{d} \, t.$$

Durch die Substitution u:=(t-b)/a mit du=(1/a) dt erhalten wir

$$\mathbb{E}[a \cdot X + b] = \int_{-\infty}^{\infty} (au + b) f_X(u) \, \mathrm{d} u.$$

Beispiel 90

Für Erwartungswert und Varianz der Gleichverteilung ergibt sich

$$\mathbb{E}[X] = \int_{a}^{b} t \cdot \frac{1}{b-a} \, \mathrm{d} \, t = \frac{1}{b-a} \cdot \int_{a}^{b} t \cdot \mathrm{d} \, t$$

$$= \frac{1}{2(b-a)} \cdot [t^{2}]_{a}^{b}$$

$$= \frac{b^{2} - a^{2}}{2(b-a)} = \frac{a+b}{2},$$

$$\mathbb{E}[X^{2}] = \frac{1}{b-a} \cdot \int_{a}^{b} t^{2} \cdot \mathrm{d} \, t = \frac{b^{2} + ba + a^{2}}{3},$$

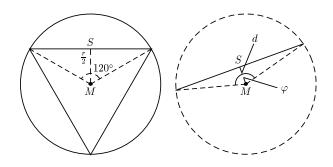
$$\operatorname{Var}[X] = \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2} = \dots = \frac{(a-b)^{2}}{12}.$$

1.4.4 Laplace-Prinzip in kontinuierlichen Wahrscheinlichkeitsräumen

Das folgende Beispiel zeigt, dass im kontinuierlichen Fall die Bedeutung von "gleichwahrscheinlich" nicht immer ganz klar sein muss.

Bertrand'sches Paradoxon

Wir betrachten einen Kreis mit einem eingeschriebenen gleichseitigen Dreieck. Was ist die Wahrscheinlichkeit, mit der die Länge einer zufällig gewählten Sehne die Seitenlänge dieses Dreiecks übersteigt (Ereignis A)?



Beobachtungen:

- ullet Die Seiten des Dreiecks haben Abstand $rac{r}{2}$ vom Mittelpunkt M.
- \bullet Die Lage jeder Sehne ist (bis auf Rotation um M) durch einen der folgenden Parameter festgelegt:
 - Abstand d zum Kreismittelpunkt,
 - ullet Winkel arphi mit dem Kreismittelpunkt.

Wir nehmen für jeden dieser Parameter Gleichverteilung an und ermitteln $\Pr[A]$.

- Sei $d \in [0, r]$ gleichverteilt. A tritt ein, wenn $d < \frac{r}{2}$, und es folgt $\Pr[A] = \frac{1}{2}$.
- ② Sei $\varphi \in [0^\circ, 180^\circ]$ gleichverteilt. Für A muss gelten $\varphi \in]120^\circ, 180^\circ]$, und es folgt somit $\Pr[A] = \frac{1}{3}$.

Siehe auch diese graphischen Darstellungen!

2. Wichtige stetige Verteilungen

2.1 Gleichverteilung

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{für } x \in [a,b], \\ 0 & \text{sonst.} \end{cases}$$

$$F(x) = \int_{-\infty}^{x} f(t) \, \mathrm{d} \, t = \begin{cases} 0 & \text{für } x < a, \\ \frac{x-a}{b-a} & \text{für } a \leq x \leq b, \\ 1 & \text{für } x > b. \end{cases}$$

$$\mathbb{E}[X] = \frac{a+b}{2} \text{ und } \operatorname{Var}[X] = \frac{(a-b)^2}{12}.$$

2.2 Normalverteilung

Die Normalverteilung nimmt unter den stetigen Verteilungen eine besonders prominente Position ein.

Definition 91

Eine Zufallsvariable X mit Wertebereich $W_X=\mathbb{R}$ heißt normalverteilt mit den Parametern $\mu \in \mathbb{R}$ und $\sigma \in \mathbb{R}^+$, wenn sie die Dichte

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \cdot \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) =: \varphi(x;\mu,\sigma)$$

besitzt.

In Zeichen schreiben wir $X \sim \mathcal{N}(\mu, \sigma^2)$.

 $\mathcal{N}(0,1)$ heißt Standardnormalverteilung. Die zugehörige Dichte $\varphi(x;0,1)$ kürzen wir durch $\varphi(x)$ ab.

Die Verteilungsfunktion zu $\mathcal{N}(\mu, \sigma^2)$ ist

$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \cdot \int_{-\infty}^{x} \exp\left(-\frac{(t-\mu)^2}{2\sigma^2}\right) dt =: \Phi(x; \mu, \sigma).$$

Diese Funktion heißt Gauß'sche Φ -Funktion (φ ist nicht geschlossen integrierbar).